Publications



See also my Google Scholar profile.
  1. Numerical investigation of the equilibrium Kauzmann transition in a two-dimensional atomistic glass
    G. Jung, M. Ozawa, G. Biroli, L. Berthier, submitted (2025)

  2. Kinetic theory of decentralized learning for smart active matter
    G. Jung, M. Ozawa, E. Bertin, Phys. Rev. Lett. 134, 248302 (2025), Editors' Suggestion
  3. https://link.aps.org/doi/10.1103/5m44-kwhv

  4. Inhomogeneous diffusion in confined colloidal suspensions
    G. Jung, A. Villada-Balbuena, T. Franosch, Soft Matter 21, 4010 (2025)
  5. https://pubs.rsc.org/en/content/articlehtml/2025/sm/d5sm00120j

  6. Roadmap on machine learning glassy dynamics
    G. Jung, R. M. Alkemade, V. Bapst, D. Coslovich, L. Filion, F. P. Landes, A. Liu, F. S. Pezzicoli, H. Shiba, G. Volpe, F. Zamponi, L. Berthier, G. Biroli, Nature Review Physics (2025)
  7. https://rdcu.be/d5qPx

  8. Normalizing flows as an enhanced sampling method for atomistic supercooled liquids
    G. Jung, G. Biroli, L. Berthier, Mach. Learn.: Sci. Technol. 5 035053 (2024)
  9. https://iopscience.iop.org/article/10.1088/2632-2153/ad6ca0

  10. How boundary interactions dominate emergent driving of inertial passive probes in active matter
    J. Shea, G. Jung, F. Schmid, J. Phys. A: Math. Theor. 57, 235006 (2024), Open Access
  11. https://iopscience.iop.org/article/10.1088/1751-8121/ad4ad7

  12. Dynamic heterogeneity at the experimental glass transition predicted by transferable machine learning
    G. Jung, G. Biroli, L. Berthier, Phys. Rev. B 109, 064205 (2024), Editors' Suggestion
  13. https://journals.aps.org/prb/abstract/10.1103/PhysRevB.109.064205

  14. Force renormalization for probes immersed in an active bath
    J. Shea, G. Jung, F. Schmid, Soft Matter 20, 1767 (2024)
  15. https://pubs.rsc.org/en/content/articlehtml/2024/sm/d3sm01387a

  16. Mobility, response and transport in non-equilibrium coarse-grained models (Special Issue: Non-Markovian Effects in Nonequilibrium Systems)
    G. Jung, J. Phys. A: Math. Theor. 57, 095004 (2024)
  17. https://iopscience.iop.org/article/10.1088/1751-8121/ad239a

  18. Noise-cancellation algorithm for simulations of Brownian particles
    R. Rusch, T. Franosch, G. Jung, Phys. Rev. E 109, 015303 (2024)
  19. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.109.015303

  20. Dynamic coarse-graining of linear and non-linear systems: Mori–Zwanzig formalism and beyond
    B. Jung, G. Jung, J. Chem. Phys. 159, 084110 (2023) https://pubs.aip.org/aip/jcp/article-abstract/159/8/084110/2907975/Dynamic-coarse-graining-of-linear-and-non-linear?redirectedFrom=fulltext

  21. Direct numerical simulations of a microswimmer in a viscoelastic fluid
    T. Kobayashi, G. Jung, Y. Matsuoka, Y. Nakayama, JJ. Molina, R. Yamamoto, Soft Matter 19, 7109 (2023) https://pubs.rsc.org/en/Content/ArticleLanding/2023/SM/D3SM00600J

  22. Predicting dynamic heterogeneity in glass-forming liquids by physics-inspired machine learning
    G. Jung, G. Biroli, L. Berthier, Phys. Rev. Lett. 130, 238202 (2023) https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.238202

  23. Computer simulations and mode-coupling theory of glass-forming confined hard-sphere fluids
    G. Jung, T. Franosch, Phys. Rev. E 107, 054101 (2023) https://journals.aps.org/pre/abstract/10.1103/PhysRevE.107.054101

  24. Stability of branched tubular membrane structures
    M. Jung, G. Jung, F. Schmid, Phys. Rev. Lett. 130, 148401 (2023)
    Featured in the American Physical Society's outreach to the press https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.148401

  25. Passive probe particle in an active bath: can we tell it is out of equilibrium?
    J. Shea, G. Jung, F. Schmid, Soft Matter 18, 6965 (2022). http://dx.doi.org/10.1039/D2SM00905F

  26. Structural properties of liquids in extreme confinement
    G. Jung, T. Franosch, Phys. Rev. E 106, 014614 (2022). https://doi.org/10.1103/PhysRevE.106.014614

  27. Layering and Packing in Confined Colloidal Suspensions (Open Access)
    A. Villada-Balbuena, G. Jung, A. B. Zuccolotto-Bernez, T. Franosch, S. Egelhaaf, Soft Matter 18, 4699 (2022). https://doi.org/10.1039/D2SM00412G

  28. Non-Markovian systems out of equilibrium: Exact results for two routes of coarse graining (Special Issue: Emerging Leaders 2021)
    G. Jung, J. Phys.: Condens. Matter 34, 204004 (2022). https://doi.org/10.1088/1361-648X/ac56a7

  29. Fluctuation-dissipation relations far from equilibrium: A case study (Open Access)
    G. Jung, F. Schmid, Soft Matter 17, 6413 (2021). 10.1039/D1SM00521A

  30. Introducing memory in coarse-grained molecular simulations (Review Article,Open Access)
    V. Klippenstein, M. Tripathy, G. Jung, F. Schmid, N. van der Vegt, JCPB 125, 4931 (2021). doi:10.1021/acs.jpcb.1c01120

  31. Tagged-particle motion in quasi-confined colloidal hard-sphere liquids
    L. Schrack, C. F. Petersen, G. Jung, M. Caraglio, T. Franosch, J. Stat. Mech 043301 (2021). doi:10.1088/1742-5468/abee23

  32. Model reduction techniques for the computation of extended Markov parameterizations for generalized Langevin equations (Open Access)
    N. Bockius, J. Shea, G. Jung, F. Schmid, M. Hanke, JCMP 33, 214003 (2021). doi:10.1088/1361-648X/abe6df

  33. Wall slip and bulk yielding in soft particle suspensions
    G. Jung, S. Fielding, Journal of Rheology 65, 199 (2021). doi:10.1122/8.0000171

  34. An improved integration scheme for mode-coupling-theory equations
    M. Caraglio, L. Schrack, G. Jung, T. Franosch, Commun. Comput. Phys. 29, 628 (2021). doi:10.4208/cicp.OA-2020-0125

  35. Tagged-particle dynamics in confined colloidal liquids
    G. Jung, L. Schrack, T. Franosch, Phys. Rev. E 102, 032611 (2020). doi:10.1103/PhysRevE.102.032611

  36. Confinement-induced demixing and crystallization
    G. Jung, C. F. Petersen, Phys. Rev. Res. 2, 033207 (2020). doi:10.1103/PhysRevResearch.2.033207

  37. Dynamical properties of densely packed confined hard-sphere fluids
    G. Jung, M. Caraglio, L. Schrack, T. Franosch, Phys. Rev. E 102, 012612 (2020). doi:10.1103/PhysRevE.102.012612

  38. Dynamic properties of quasi-confined colloidal hard-sphere liquids near the glass transition
    L. Schrack, C. F. Petersen, G. Jung, M. Caraglio, T. Franosch, J. Stat. Mech 093301 (2020). doi:10.1088/1742-5468/ababfe

  39. Scaling equations for mode-coupling theories with multiple decay channels
    G. Jung, T. Voigtmann, T. Franosch, J. Stat. Mech. 073301 (2020). doi:10.1088/1742-5468/ab9e61

  40. Frequency-dependent dielectric polarizability of flexible polyelectrolytes in electrolyte solution: A Dissipative Particle Dynamics simulation (Open Access)
    G. Jung, S. Kasper, F. Schmid, Journal of the Electrochemical Society 166, B3194 (2019). doi:10.1149/2.0231909jes

  41. Generalized Langevin dynamics: Construction and numerical integration of non-Markovian particle-based models
    G. Jung, M. Hanke, F. Schmid, Soft Matter 14, 9368 (2018). doi:10.1039/C8SM01817K

  42. Frequency-dependent hydrodynamic interactions between two solid spheres
    G. Jung, F. Schmid, Physics of Fluids 29, 126101 (2017). doi:10.1063/1.5001565

  43. Iterative reconstruction of memory kernels
    G. Jung, M. Hanke, F. Schmid, J. Chemical Theory and Computation 13, 2481 (2017). doi:10.1021/acs.jctc.7b00274

  44. Computing bulk and shear viscosities from simulations of fluids with dissipative and stochastic interactions
    G. Jung, F. Schmid, J. Chem. Phys. 144, 204104 (2016). doi:10.1063/1.4950760