Publications



See also my Google Scholar profile.
  1. Kinetic theory of decentralized learning for smart active matter
    G. Jung, M. Ozawa, E. Bertin, submitted (2025)

  2. Roadmap on machine learning glassy dynamics
    G. Jung, R. M. Alkemade, V. Bapst, D. Coslovich, L. Filion, F. P. Landes, A. Liu, F. S. Pezzicoli, H. Shiba, G. Volpe, F. Zamponi, L. Berthier, G. Biroli, Nature Review Physics (2025)
  3. https://rdcu.be/d5qPx

  4. Normalizing flows as an enhanced sampling method for atomistic supercooled liquids
    G. Jung, G. Biroli, L. Berthier, Mach. Learn.: Sci. Technol. 5 035053 (2024)
  5. https://iopscience.iop.org/article/10.1088/2632-2153/ad6ca0

  6. How boundary interactions dominate emergent driving of inertial passive probes in active matter
    J. Shea, G. Jung, F. Schmid, J. Phys. A: Math. Theor. 57, 235006 (2024), Open Access
  7. https://iopscience.iop.org/article/10.1088/1751-8121/ad4ad7

  8. Dynamic heterogeneity at the experimental glass transition predicted by transferable machine learning
    G. Jung, G. Biroli, L. Berthier, Phys. Rev. B 109, 064205 (2024), Editors' Suggestion
  9. https://journals.aps.org/prb/abstract/10.1103/PhysRevB.109.064205

  10. Force renormalization for probes immersed in an active bath
    J. Shea, G. Jung, F. Schmid, Soft Matter 20, 1767 (2024)
  11. https://pubs.rsc.org/en/content/articlehtml/2024/sm/d3sm01387a

  12. Mobility, response and transport in non-equilibrium coarse-grained models (Special Issue: Non-Markovian Effects in Nonequilibrium Systems)
    G. Jung, J. Phys. A: Math. Theor. 57, 095004 (2024)
  13. https://iopscience.iop.org/article/10.1088/1751-8121/ad239a

  14. Noise-cancellation algorithm for simulations of Brownian particles
    R. Rusch, T. Franosch, G. Jung, Phys. Rev. E 109, 015303 (2024)
  15. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.109.015303

  16. Dynamic coarse-graining of linear and non-linear systems: Mori–Zwanzig formalism and beyond
    B. Jung, G. Jung, J. Chem. Phys. 159, 084110 (2023) https://pubs.aip.org/aip/jcp/article-abstract/159/8/084110/2907975/Dynamic-coarse-graining-of-linear-and-non-linear?redirectedFrom=fulltext

  17. Direct numerical simulations of a microswimmer in a viscoelastic fluid
    T. Kobayashi, G. Jung, Y. Matsuoka, Y. Nakayama, JJ. Molina, R. Yamamoto, Soft Matter 19, 7109 (2023) https://pubs.rsc.org/en/Content/ArticleLanding/2023/SM/D3SM00600J

  18. Predicting dynamic heterogeneity in glass-forming liquids by physics-inspired machine learning
    G. Jung, G. Biroli, L. Berthier, Phys. Rev. Lett. 130, 238202 (2023) https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.238202

  19. Computer simulations and mode-coupling theory of glass-forming confined hard-sphere fluids
    G. Jung, T. Franosch, Phys. Rev. E 107, 054101 (2023) https://journals.aps.org/pre/abstract/10.1103/PhysRevE.107.054101

  20. Stability of branched tubular membrane structures
    M. Jung, G. Jung, F. Schmid, Phys. Rev. Lett. 130, 148401 (2023)
    Featured in the American Physical Society's outreach to the press https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.148401

  21. Passive probe particle in an active bath: can we tell it is out of equilibrium?
    J. Shea, G. Jung, F. Schmid, Soft Matter 18, 6965 (2022). http://dx.doi.org/10.1039/D2SM00905F

  22. Structural properties of liquids in extreme confinement
    G. Jung, T. Franosch, Phys. Rev. E 106, 014614 (2022). https://doi.org/10.1103/PhysRevE.106.014614

  23. Layering and Packing in Confined Colloidal Suspensions (Open Access)
    A. Villada-Balbuena, G. Jung, A. B. Zuccolotto-Bernez, T. Franosch, S. Egelhaaf, Soft Matter 18, 4699 (2022). https://doi.org/10.1039/D2SM00412G

  24. Non-Markovian systems out of equilibrium: Exact results for two routes of coarse graining (Special Issue: Emerging Leaders 2021)
    G. Jung, J. Phys.: Condens. Matter 34, 204004 (2022). https://doi.org/10.1088/1361-648X/ac56a7

  25. Fluctuation-dissipation relations far from equilibrium: A case study (Open Access)
    G. Jung, F. Schmid, Soft Matter 17, 6413 (2021). 10.1039/D1SM00521A

  26. Introducing memory in coarse-grained molecular simulations (Review Article,Open Access)
    V. Klippenstein, M. Tripathy, G. Jung, F. Schmid, N. van der Vegt, JCPB 125, 4931 (2021). doi:10.1021/acs.jpcb.1c01120

  27. Tagged-particle motion in quasi-confined colloidal hard-sphere liquids
    L. Schrack, C. F. Petersen, G. Jung, M. Caraglio, T. Franosch, J. Stat. Mech 043301 (2021). doi:10.1088/1742-5468/abee23

  28. Model reduction techniques for the computation of extended Markov parameterizations for generalized Langevin equations (Open Access)
    N. Bockius, J. Shea, G. Jung, F. Schmid, M. Hanke, JCMP 33, 214003 (2021). doi:10.1088/1361-648X/abe6df

  29. Wall slip and bulk yielding in soft particle suspensions
    G. Jung, S. Fielding, Journal of Rheology 65, 199 (2021). doi:10.1122/8.0000171

  30. An improved integration scheme for mode-coupling-theory equations
    M. Caraglio, L. Schrack, G. Jung, T. Franosch, Commun. Comput. Phys. 29, 628 (2021). doi:10.4208/cicp.OA-2020-0125

  31. Tagged-particle dynamics in confined colloidal liquids
    G. Jung, L. Schrack, T. Franosch, Phys. Rev. E 102, 032611 (2020). doi:10.1103/PhysRevE.102.032611

  32. Confinement-induced demixing and crystallization
    G. Jung, C. F. Petersen, Phys. Rev. Res. 2, 033207 (2020). doi:10.1103/PhysRevResearch.2.033207

  33. Dynamical properties of densely packed confined hard-sphere fluids
    G. Jung, M. Caraglio, L. Schrack, T. Franosch, Phys. Rev. E 102, 012612 (2020). doi:10.1103/PhysRevE.102.012612

  34. Dynamic properties of quasi-confined colloidal hard-sphere liquids near the glass transition
    L. Schrack, C. F. Petersen, G. Jung, M. Caraglio, T. Franosch, J. Stat. Mech 093301 (2020). doi:10.1088/1742-5468/ababfe

  35. Scaling equations for mode-coupling theories with multiple decay channels
    G. Jung, T. Voigtmann, T. Franosch, J. Stat. Mech. 073301 (2020). doi:10.1088/1742-5468/ab9e61

  36. Frequency-dependent dielectric polarizability of flexible polyelectrolytes in electrolyte solution: A Dissipative Particle Dynamics simulation (Open Access)
    G. Jung, S. Kasper, F. Schmid, Journal of the Electrochemical Society 166, B3194 (2019). doi:10.1149/2.0231909jes

  37. Generalized Langevin dynamics: Construction and numerical integration of non-Markovian particle-based models
    G. Jung, M. Hanke, F. Schmid, Soft Matter 14, 9368 (2018). doi:10.1039/C8SM01817K

  38. Frequency-dependent hydrodynamic interactions between two solid spheres
    G. Jung, F. Schmid, Physics of Fluids 29, 126101 (2017). doi:10.1063/1.5001565

  39. Iterative reconstruction of memory kernels
    G. Jung, M. Hanke, F. Schmid, J. Chemical Theory and Computation 13, 2481 (2017). doi:10.1021/acs.jctc.7b00274

  40. Computing bulk and shear viscosities from simulations of fluids with dissipative and stochastic interactions
    G. Jung, F. Schmid, J. Chem. Phys. 144, 204104 (2016). doi:10.1063/1.4950760